
ROS 2 Real-Time Working Group

ROS 2 Real-Time Working Group

Mar 30, 2022

CONTENTS

1 Guides 3

2 Test environment 15

3 Subproject List 17

4 Related Projects 19

5 Resources 23

6 Contact 25

7 How to Contribute 27

8 Roadmap 29

i

ii

ROS 2 Real-Time Working Group

The Real-Time Working Group’s mission is to advocate for and work on memory management, real-time pub/sub,
real-time DDS, and tools that allow tracing, profiling and optimizing.

CONTENTS 1

ROS 2 Real-Time Working Group

2 CONTENTS

CHAPTER

ONE

GUIDES

1.1 Real Time Operating System Setup

1.1.1 Real-Time Linux

These are guides to build and configure the Linux kernel using PREEMPT_RT.

How to build your own Linux real-time kernel

Introduction

In this document, several guides are listed for users who want to build their own real-time kernel. That is, users who
want to build a specific kernel version, a specific architecture or use a customized kernel configuration.

External guides

• How to setup Linux with PREEMPT_RT properly

– Description: Official instructions from the Linux Foundation

– https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup

• Building real-time Linux for ROS 2

– Description: Community contributed step-by-step guide explaining how to build, configure and deploy a
kernel with a RT_PREEMPT patch

– https://docs.ros.org/en/rolling/Tutorials/Building-Realtime-rt_preempt-kernel-for-ROS-2.html

Build a Linux Real-Time kernel using docker

Introduction

This document explains how to build a real-time kernel using a docker container provided by the ROS Real-Time
Working Group. The docker container comes with cross-compilation tools installed, and a ready-to-build RT kernel.
This should be the preferred option for those users who simply want to use to cross-compile a new kernel.

3

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/preemptrt_setup
https://docs.ros.org/en/rolling/Tutorials/Building-Realtime-rt_preempt-kernel-for-ROS-2.html

ROS 2 Real-Time Working Group

Supported configuration

For the moment, the tool supports the following options:

• 5.4.0 kernel version and 5.4.86-rt48 patch

• cross-compilation for aarch64

• pre-configured kernel settings

• Raspberry Pi 4 Model B Rev 1.2 (more platforms will be added in the future)

Build and run docker container

For the local build:

$ git clone https://github.com/ros-realtime/linux-real-time-kernel-builder
$ cd linux-real-time-kernel-builder
$ docker build -t rtwg-image .
$ docker run -t -i rtwg-image bash

Kernel configuration

By default the kernel is configured with the following options:

• RT preempt real-time kernel

• Fixed operation frequency at 1.0 GHz

• CPU1, CPU2 and CPU3 tickless

• No CPU frequency scaling

This is configured automatically by setting the following options:

$./scripts/config -d CONFIG_PREEMPT \
$./scripts/config -e CONFIG_PREEMPT_RT \
$./scripts/config -d CONFIG_NO_HZ_IDLE \
$./scripts/config -e CONFIG_NO_HZ_FULL \
$./scripts/config -d CONFIG_HZ_250 \
$./scripts/config -e CONFIG_HZ_1000 \
$./scripts/config -d CONFIG_AUFS_FS \

which corresponds to the following

Enable CONFIG_PREEMPT_RT
-> General Setup
-> Preemption Model (Fully Preemptible Kernel (Real-Time))
(X) Fully Preemptible Kernel (Real-Time)

Enable CONFIG_HIGH_RES_TIMERS
-> General setup
-> Timers subsystem
[*] High Resolution Timer Support

(continues on next page)

4 Chapter 1. Guides

ROS 2 Real-Time Working Group

(continued from previous page)

Enable CONFIG_NO_HZ_FULL
-> General setup
-> Timers subsystem
-> Timer tick handling (Full dynticks system (tickless))
(X) Full dynticks system (tickless)

Set CONFIG_HZ_1000
-> Kernel Features
-> Timer frequency (1000 HZ)
(X) 1000 HZ

Set CPU_FREQ_DEFAULT_GOV_PERFORMANCE [=y]
-> CPU Power Management
-> CPU Frequency scaling
-> CPU Frequency scaling (CPU_FREQ [=y])
-> Default CPUFreq governor (<choice> [=y])
(X) performance

Disable CONFIG_AUFS_FS, otherwise RT kernel build breaks
x -> File systems ␣
→˓ x
x (1) -> Miscellaneous filesystems (MISC_FILESYSTEMS [=y])

Todo:

• CONFIG_CPU_FREQ=n or CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y.

• CONFIG_CPU_IDLE=n: Disable transitions to low-power states

If you need to reconfigure it, run

$ cd linux-raspi-5.4.0/
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig

Kernel build

$ cd linux-raspi-5.4.0/
$ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- -j `nproc` deb-pkg

You need 32GB free disk space to build it, it takes a while, and the results are located here:

user@3e9fd281ed2a:~/linux_build/linux-raspi-5.4.0$ ls -la ../*.deb
-rw-r--r-- 1 user user 11462528 Jun 17 09:46 ../linux-headers-5.4.114-rt57_5.4.114-rt57-
→˓1_arm64.deb
-rw-r--r-- 1 user user 494790284 Jun 17 09:50 ../linux-image-5.4.114-rt57-dbg_5.4.114-
→˓rt57-1_arm64.deb
-rw-r--r-- 1 user user 39756144 Jun 17 09:46 ../linux-image-5.4.114-rt57_5.4.114-rt57-1_
→˓arm64.deb
-rw-r--r-- 1 user user 1055224 Jun 17 09:46 ../linux-libc-dev_5.4.114-rt57-1_arm64.deb

1.1. Real Time Operating System Setup 5

ROS 2 Real-Time Working Group

Deploy

Download and install Ubuntu 20.04 image

Follow these links to download and install Ubuntu 20.04. In the case of the Raspberry PI:

• https://ubuntu.com/download/raspberry-pi

• https://ubuntu.com/download/raspberry-pi/thank-you?version=20.04.2&architecture=server-arm64+raspi

• https://ubuntu.com/tutorials/create-an-ubuntu-image-for-a-raspberry-pi-on-ubuntu#
2-on-your-ubuntu-machine

initial username and password
ubuntu/ubuntu

Copy a new kernel to your system and install it

Todo: Add instructions explaining how to move the files to the Raspberry PI

Assumed you have already copied all *.deb packages to your $HOME/ubuntu directory

$ cd $HOME/ubuntu
$ sudo dpkg -i *.deb

Now it is necessary to adjust vmlinuz and initrd.img links. First, we locate the kernel that we are using:

ubuntu@ubuntu:/boot$ uname -a
Linux ubuntu 5.4.0-1028-raspi #31-Ubuntu SMP PREEMPT Wed Jan 20 11:30:45 UTC 2021␣
→˓aarch64 aarch64 aarch64 GNU/Linux

We check the real-time kernel version that we installed, in this case is 5.4.114-rt57:

ubuntu@ubuntu:~$ ls /boot/
System.map-5.4.0-1028-raspi config-5.4.0-1028-raspi dtb dtbs ␣
→˓initrd.img-5.4.0-1028-raspi initrd.img.old vmlinuz-5.4.0-1036-raspi
System.map-5.4.0-1036-raspi config-5.4.0-1036-raspi dtb-5.4.0-1036-raspi firmware ␣
→˓initrd.img-5.4.0-1036-raspi vmlinuz vmlinuz-5.4.114-rt57
System.map-5.4.114-rt57 config-5.4.114-rt57 dtb-5.4.114-rt57 initrd.img ␣
→˓initrd.img-5.4.114-rt57 vmlinuz-5.4.0-1028-raspi vmlinuz.old

Now we replace the old kernel with the new real-time one:

$ cd /boot
$ sudo ln -s -f vmlinuz-5.4.114-rt57 vmlinuz
$ sudo ln -s -f vmlinuz-5.4.0-1028-raspi vmlinuz.old
$ sudo ln -s -f initrd.img-5.4.114-rt57 initrd.img
$ sudo ln -s -f initrd.img-5.4.0-1028-raspi initrd.img.old
$ sudo cp vmlinuz firmware/vmlinuz
$ sudo cp vmlinuz firmware/vmlinuz.bak
$ sudo cp initrd.img firmware/initrd.img
$ sudo cp initrd.img firmware/initrd.img.bak

$ sudo reboot

6 Chapter 1. Guides

https://ubuntu.com/download/raspberry-pi
https://ubuntu.com/download/raspberry-pi/thank-you?version=20.04.2&architecture=server-arm64+raspi
https://ubuntu.com/tutorials/create-an-ubuntu-image-for-a-raspberry-pi-on-ubuntu#2-on-your-ubuntu-machine
https://ubuntu.com/tutorials/create-an-ubuntu-image-for-a-raspberry-pi-on-ubuntu#2-on-your-ubuntu-machine

ROS 2 Real-Time Working Group

Configure boot options

Inside the Raspberry PI, add the following at the end of the line in /boot/firmware/cmdline.txt:

$ sudo vim /boot/firmware/cmdline.txt
dwc_otg.fiq_fsm_enable=0 dwc_otg.fiq_enable=0 dwc_otg.nak_holdoff=0 dwg_otg.speed=1␣
→˓rcu_nocbs=0 nohz_full=1-3 isolcpus=1-3 audit=0 watchdog=0 skew_tick=1

Here is an explanation of what each option will do:

• dwc_otg.fiq_fsm_enable=0 dwc_otg.fiq_enable=0 dwc_otg.nak_holdoff=0: solves an issue caus-
ing a high CPU usage from the USB driver (see https://www.osadl.org/Single-View.111+M5c03315dc57.0.html)

• rcu_nocbs=0: relocates RCU callbacks to kernel threads

• nohz_full=1-3: makes CPU1, CPU2 and CPU3 tickless

• isolcpus=1-3: isolates CPU1, CPU2 and CPU3. No process will be automatically scheduled to these CPUs.

• audit=0

• watchdog=0: disables the watchdog timer

• skew_tick=1

TODO: explain all the boot options used

For more information see:

• https://linux.enea.com/4.0/documentation/book-enea-linux-realtime-guide.pdf

Verify that eveything is correctly configured

After reboot you should see a new RT kernel installed

ubuntu@ubuntu:/boot$ uname -a
Linux ubuntu 5.4.114-rt57 #1 SMP PREEMPT_RT Thu Jun 17 09:21:41 UTC 2021 aarch64 aarch64␣
→˓aarch64 GNU/Linux

Check that fiq is actually disabled:

ubuntu@ubuntu:~$ dmesg | grep -i fiq
[0.000000] Kernel command line: coherent_pool=1M 8250.nr_uarts=1 snd_bcm2835.enable_
→˓compat_alsa=0 snd_bcm2835.enable_hdmi=1 bcm2708_fb.fbwidth=0 bcm2708_fb.fbheight=0␣
→˓bcm2708_fb.fbswap=1 smsc95xx.macaddr=DC:A6:32:A7:32:00 vc_mem.mem_base=0x3ec00000 vc_
→˓mem.mem_size=0x40000000 net.ifnames=0 dwc_otg.lpm_enable=0 console=ttyS0,115200␣
→˓console=tty1 root=LABEL=writable rootfstype=ext4 elevator=deadline rootwait fixrtc dwc_
→˓otg.fiq_fsm_enable=0 dwc_otg.fiq_enable=0 dwc_otg.nak_holdoff=0 dwg_otg.speed=1 rcu_
→˓nocbs=0 nohz_full=1-3 isolcpus=1-3 quiet splash
[1.771203] dwc_otg: FIQ disabled
[1.771212] dwc_otg: FIQ split-transaction FSM disabled

Check that interrupts, except timers, are only handled by CPU0:

ubuntu@ubuntu:~$ cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

1: 0 0 0 0 GICv2 25 Level vgic
3: 306043 106 104 103 GICv2 30 Level arch_timer

(continues on next page)

1.1. Real Time Operating System Setup 7

https://www.osadl.org/Single-View.111+M5c03315dc57.0.html
https://linux.enea.com/4.0/documentation/book-enea-linux-realtime-guide.pdf

ROS 2 Real-Time Working Group

(continued from previous page)

4: 0 0 0 0 GICv2 27 Level kvm guest vtimer
11: 41860 0 0 0 GICv2 65 Level fe00b880.mailbox
15: 0 0 0 0 GICv2 150 Level fe204000.spi
16: 1143 0 0 0 GICv2 125 Level ttyS0
17: 0 0 0 0 GICv2 149 Level fe804000.i2c
20: 0 0 0 0 GICv2 114 Level DMA IRQ
22: 0 0 0 0 GICv2 116 Level DMA IRQ
23: 342 0 0 0 GICv2 117 Level DMA IRQ
27: 47 0 0 0 GICv2 66 Level VCHIQ doorbell
28: 20553 0 0 0 GICv2 158 Level mmc1, mmc0
29: 0 0 0 0 GICv2 48 Level arm-pmu
30: 0 0 0 0 GICv2 49 Level arm-pmu
31: 0 0 0 0 GICv2 50 Level arm-pmu
32: 0 0 0 0 GICv2 51 Level arm-pmu
34: 840 0 0 0 GICv2 189 Level eth0
35: 475 0 0 0 GICv2 190 Level eth0
41: 0 0 0 0 GICv2 175 Level PCIe PME, aerdrv
42: 45 0 0 0 BRCM STB PCIe MSI 524288 Edge ␣
→˓xhci_hcd
IPI0: 31 14 14 14 Rescheduling interrupts
IPI1: 0 277 277 278 Function call interrupts
IPI2: 0 0 0 0 CPU stop interrupts
IPI3: 0 0 0 0 CPU stop (for crash dump)␣
→˓interrupts
IPI4: 0 0 0 0 Timer broadcast interrupts
IPI5: 21717 8 8 6 IRQ work interrupts
IPI6: 0 0 0 0 CPU wake-up interrupts
Err: 0

Check that soft-interrupts, except timers, are only handled by CPU0:

ubuntu@ubuntu:~$ cat /proc/softirqs
CPU0 CPU1 CPU2 CPU3

HI: 2 0 0 0
TIMER: 343845 105 103 103

NET_TX: 165 0 0 0
NET_RX: 1628 0 0 0
BLOCK: 9192 0 0 0

IRQ_POLL: 0 0 0 0
TASKLET: 3728 0 0 0
SCHED: 0 0 0 0

HRTIMER: 60501 0 0 0
RCU: 0 0 0 0

Check that all the CPU cores are operating at 1000MHz:

reset cpufreq stat counters
ubuntu@ubuntu:~$ echo '1' | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/stats/reset
1
ubuntu@ubuntu:~$ cpufreq-info -s -m
600 MHz:0.00%, 700 MHz:0.00%, 800 MHz:0.00%, 900 MHz:0.00%, 1000 MHz:100.00%, 1.10 GHz:0.
→˓00%, 1.20 GHz:0.00%, 1.30 GHz:0.00%, 1.40 GHz:0.00%, 1.50 GHz:0.00%

8 Chapter 1. Guides

ROS 2 Real-Time Working Group

Benchmark

Finally, we can benchmark the real-time performance of the configured kernel with the platform we are using. A
common benchmark is to measure the interrupt latency using a tool named cyclictest.

For example you run a latency test imposing CPU and I/O stress in the system and verifying that the latency test results
in good performance.

$ taskset -c 0 stress -c 1 &
$ taskset -c 1 stress -c 1 &
$ taskset -c 2 stress -c 1 &
$ taskset -c 3 stress -c 1 &
$ taskset -c 0 stress -i 1 &
$ taskset -c 1 stress -i 1 &
$ taskset -c 2 stress -i 1 &
$ taskset -c 3 stress -i 1 &
$ taskset -c 0 cyclictest -p 90 -m -t1 -n -D 3h -i 200 -a 1 -h500 -q

In order to generate a latency plot you can use the OSADL script.

1.1. Real Time Operating System Setup 9

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://www.osadl.org/Create-a-latency-plot-from-cyclictest-hi.bash-script-for-latency-plot.0.html

ROS 2 Real-Time Working Group

Real-time Raspberry PI images

Introduction

For those users who simply want to test ROS 2 real-time applications in a Raspberry Pi, some ready-to-use images are
provided.

Raspberry PI images

TODO

1.1.2 Build VxWorks

Your can find more information about how to use ROS 2 with VxWorks here:

• https://github.com/Wind-River/vxworks7-layer-for-ros2

1.1.3 Build QNX

You can find the ROS 2 official QNX build instructions here: https://ros2-qnx-documentation.readthedocs.io/en/latest/

1.2 How to configure a RMW implementation

1.2.1 Fast-DDS

TODO

1.2.2 Cyclone-DDS

TODO

1.2.3 Connext-DDS

TODO

1.2.4 Iceoryx

TODO

10 Chapter 1. Guides

https://github.com/Wind-River/vxworks7-layer-for-ros2
https://ros2-qnx-documentation.readthedocs.io/en/latest/

ROS 2 Real-Time Working Group

1.3 How to configure a ROS2 real-time application

TODO

1.4 How to use ros2_tracing to trace and analyze an application

This guide shows how to use ros2_tracing to trace and analyze a ROS 2 application. For this guide, the application
will be performance_test.

1.4.1 Overview

This guide covers:

1. installing tracing-related tools and building ROS 2 with the core instrumentation enabled

2. running and tracing a performance_test run

3. analyzing the trace data using tracetools_analysis to plot the callback durations

1.4.2 Prerequisites

This guide is aimed at real-time systems. See the real-time system setup guide. However, the guide will work if you
are using a non-real-time system.

Note: This guide was written for ROS 2 Rolling on Ubuntu 20.04. It should work on other ROS 2 distros or Ubuntu
versions, but some things might need to be adjusted.

1.4.3 Installing and building

First, make sure you have installed all dependencies for ROS 2 Rolling.

Install LTTng as well as babeltrace. We will only install the LTTng userspace tracer.

$ sudo apt-get update
$ sudo apt-get install -y lttng-tools liblttng-ust-dev python3-lttng python3-babeltrace␣
→˓babeltrace

Then create a workspace, import the ROS 2 Rolling code, and clone performance_test and tracetools_analysis.

$ cd ~/
$ mkdir -p tracing_ws/src
$ cd tracing_ws/
$ vcs import src/ --input https://raw.githubusercontent.com/ros2/ros2/master/ros2.repos
$ cd src/
$ git clone https://gitlab.com/ApexAI/performance_test.git
$ git clone https://gitlab.com/ros-tracing/tracetools_analysis.git
$ cd ..

Then build up to performance_test and configure it for ROS 2. See its documentation. We also need to build
ros2trace to set up tracing using the ros2 trace command and tracetools_analysis to analyze the data.

1.3. How to configure a ROS2 real-time application 11

https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ros-tracing/tracetools_analysis
https://docs.ros.org/en/rolling/Installation/Ubuntu-Development-Setup.html
https://lttng.org/docs/
https://gitlab.com/ApexAI/performance_test#ros-2-middleware-plugins

ROS 2 Real-Time Working Group

$ colcon build --packages-up-to ros2trace tracetools_analysis performance_test --cmake-
→˓args -DPERFORMANCE_TEST_RCLCPP_ENABLED=ON

You should see the following message once tracetools is done building:

LTTng found: tracing enabled

This confirms that LTTng was properly detected and that the instrumentation built into the ROS 2 core is enabled.

Next, we will run a performance_test experiment and trace it.

1.4.4 Tracing

Start an LTTng session daemon. For userspace tracing, the daemon does not need to be started as root. Note that a
non-root daemon will be spawned automatically by ros2 trace if it is not already running.

$ lttng-sessiond --daemonize

In one terminal, source the workspace and setup tracing. We need to explicitly use the --kernel option with no
values to disable kernel tracing, since we did not install the kernel tracer. When running the command, a list of ROS 2
userspace events will be printed. It will also print the path to the directory that will contain the resulting trace (under
~/.ros/tracing). Press enter to start tracing.

$ # terminal 1
$ cd ~/tracing_ws
$ source install/setup.bash
$ ros2 trace --session-name perf-test --kernel --list

In a second terminal, source the workspace.

$ # terminal 2
$ cd ~/tracing_ws
$ source install/setup.bash

Then run the performance_test experiment. We simply create an experiment with a node publishing ~1 MB mes-
sages to another node as fast as possible for 60 seconds using the second highest real-time priority so that we don’t
interfere with critical kernel threads. We need to run performance_test as root to be able to use real-time priorities.

$ # terminal 2
$ sudo ./install/performance_test/lib/performance_test/perf_test -c rclcpp-single-
→˓threaded-executor -p 1 -s 1 -r 0 -m Array1m --reliable --max-runtime 60 --use-rt-prio␣
→˓98

If that last command doesn’t work for you (with an error like: “error while loading shared libraries”), run the slightly-
different command below. This is because, for security reasons, we need to manually pass *PATH environment variables
for some shared libraries to be found (see this explanation).

$ # terminal 2
$ sudo env PATH="$PATH" LD_LIBRARY_PATH="$LD_LIBRARY_PATH" ./install/performance_test/
→˓lib/performance_test/perf_test -c rclcpp-single-threaded-executor -p 1 -s 1 -r 0 -m␣
→˓Array1m --reliable --max-runtime 60 --use-rt-prio 98

Note: If you’re not using a real-time kernel, simply run:

12 Chapter 1. Guides

https://unix.stackexchange.com/a/251374

ROS 2 Real-Time Working Group

$ # terminal 2
$./install/performance_test/lib/performance_test/perf_test -c rclcpp-single-threaded-
→˓executor -p 1 -s 1 -r 0 -m Array1m --reliable --max-runtime 60

Once the experiment is done, in the first terminal, press enter again to stop tracing. Use babeltrace to quickly look
at the resulting trace.

$ babeltrace ~/.ros/tracing/perf-test

The output of the above command is a human-readable version of the raw Common Trace Format (CTF) data, which
is a list of trace events. Each event has a timestamp, an event type, some information on the process that generated the
event, and the values of the fields of the given event type.

Next, we will analyze the trace.

1.4.5 Analysis

tracetools_analysis provides a Python API to easily analyze traces. We can use it in a Jupyter notebook with bokeh
to plot the data. The tracetools_analysis repository contains a few sample notebooks, including one notebook to
analyze subscription callback durations.

For this guide, we will plot the durations of the subscription callback in the subscriber node.

Install Jupyter notebook and bokeh, and then open the sample notebook.

$ sudo apt-get install -y jupyter-notebook
$ pip3 install bokeh
$ jupyter notebook ~/tracing_ws/src/tracetools_analysis/tracetools_analysis/analysis/
→˓callback_duration.ipynb

This will open the notebook in the browser.

Replace the value for the path variable in the second cell to the path to the trace directory:

path = '~/.ros/tracing/perf-test'

Run the notebook by clicking the Run button for each cell. Running the cell that does the trace processing might take
a few minutes on the first run, but subsequent runs will be much quicker.

You should get a plot that looks like this:

1.4. How to use ros2_tracing to trace and analyze an application 13

https://gitlab.com/ros-tracing/tracetools_analysis
https://jupyter.org/
https://docs.bokeh.org/en/latest/index.html
https://gitlab.com/ros-tracing/tracetools_analysis/-/tree/master/tracetools_analysis/analysis
https://gitlab.com/ros-tracing/tracetools_analysis/-/blob/master/tracetools_analysis/analysis/callback_duration.ipynb
https://gitlab.com/ros-tracing/tracetools_analysis/-/blob/master/tracetools_analysis/analysis/callback_duration.ipynb

ROS 2 Real-Time Working Group

We can see that most of the callbacks take less than 0.01 ms, but there are some outliers taking over 0.02 or 0.03 ms.

1.4.6 Conclusion

This guide showed how to install tracing-related tools and build ROS 2 with tracing instrumentation. Then it
showed how to trace a performance_test experiment using ros2_tracing and plot the callback durations using
tracetools_analysis.

For more trace analyses, take a look at the other sample notebooks and the tracetools_analysisAPI documentation.
The ros2_tracing design document also contains a lot of information.

14 Chapter 1. Guides

https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ros-tracing/tracetools_analysis
https://gitlab.com/ros-tracing/tracetools_analysis/-/tree/master/tracetools_analysis/analysis
https://ros-tracing.gitlab.io/tracetools_analysis-api/master/tracetools_analysis/
https://gitlab.com/ros-tracing/ros2_tracing/-/blob/master/doc/design_ros_2

CHAPTER

TWO

TEST ENVIRONMENT

This document describes a test environment used for the ROS2 real-time tests

2.1 Hardware

Two hardware platforms:

• Hardware architecture

– Intel x86_64

– ARM v8

• Number of CPU cores => 4

• Amount of RAM => 8 GB

• Supports Ubuntu 20.04 LTS release

2.1.1 ARM

• Raspberry Pi 4 8 GB RAM, 4 CPU cores or similar

2.1.2 Intel

• any Intel PC with 8 GB RAM, 4 CPU cores

• UP squared 8 GB RAM, 4 CPU cores

2.2 Software

We use ROS2 Foxy release and Ubuntu 20.04 which is a Tier 1 platform as described in the Release information.

15

https://www.raspberrypi.org/blog/8gb-raspberry-pi-4-on-sale-now-at-75
https://up-shop.org/up-squared-board-pentium-quad-core-8gb-memory-64gb-emmc.html
https://docs.ros.org/en/foxy/Releases/Release-Foxy-Fitzroy.html#supported-platforms

ROS 2 Real-Time Working Group

2.2.1 ROS2 foxy release

• Prebuilt Debian packages from Installing ROS 2 via Debian Packages

2.2.2 Latest Ubuntu 20.04 LTS (ISO image)

• Raspberry Pi4

• Intel UP squared

• Intel Ubuntu 20.04.2.0 LTS

2.2.3 Latest Stable PREEMPT_RT Kernel

• PREEMPT_RT Kernel is built using these instructions

16 Chapter 2. Test environment

https://docs.ros.org/en/foxy/Installation/Linux-Install-Debians.html
https://ubuntu.com/download/raspberry-pi
https://wiki.up-community.org/Ubuntu
https://ubuntu.com/download/desktop
https://github.com/ros-realtime/linux-real-time-kernel-builder

CHAPTER

THREE

SUBPROJECT LIST

The following subprojects are owned by Real-Time Working Group:

• linux-real-time-kernel-builder

– Description: Build and setup RT kernel for the ROS2 testing

– Repositories

∗ https://github.com/ros-realtime/linux-real-time-kernel-builder

17

https://github.com/ros-realtime/linux-real-time-kernel-builder

ROS 2 Real-Time Working Group

18 Chapter 3. Subproject List

CHAPTER

FOUR

RELATED PROJECTS

4.1 Performance measurements

• performance_test

– Description: Tool to test the performance of pub/sub based communication frameworks

– Repositories

∗ https://gitlab.com/ApexAI/performance_test

• ros2-performance

– Description: iRobot ROS2 performance evaluation framework

– Repositories

∗ https://github.com/irobot-ros/ros2-performance

• buildfarm_perf_tests

– Description: Performance tests which run regularly on the ROS 2 buildfarm

– Repositories

∗ https://github.com/ros2/buildfarm_perf_tests

• TwoWaysMeasurement

– Description: Tool to test the real-time performance in a ping-pong scenario

– Repositories

∗ https://github.com/y-okumura-isp/TwoWaysMeasurement

• ros2_timer_latency_measurement

– Description: Tool to measure the accuracy of the ROS 2 timer

– Repositories

∗ https://github.com/hsgwa/ros2_timer_latency_measurement

19

https://gitlab.com/ApexAI/performance_test
https://github.com/irobot-ros/ros2-performance
https://github.com/ros2/buildfarm_perf_tests
https://github.com/y-okumura-isp/TwoWaysMeasurement
https://github.com/hsgwa/ros2_timer_latency_measurement

ROS 2 Real-Time Working Group

4.2 Real-time utilities

• realtime_support

– Description: Minimal real-time testing utility for measuring jitter and latency

∗ rttest: Minimal tool for instrumenting and running tests for synchronous real-time systems

∗ tlsf_cpp: C++ stdlib-compatible wrapper around tlsf allocator and ROS2 examples

– Repositories

∗ https://github.com/ros2/realtime_support

• ros2_tracing

– Description: Tracing tools for ROS 2

– Repositories

∗ https://gitlab.com/ros-tracing/ros2_tracing

∗ https://gitlab.com/ros-tracing/tracetools_analysis

• osrf_testing_tools_cpp

– Description: This repository contains testing tools for C++, and is used in OSRF projects. The mem-
ory_tools API lets you intercept calls to dynamic memory calls like malloc and free, and provides some
convenience functions for differentiating between expected and unexpected calls to dynamic memory func-
tions.

– Repositories:

∗ https://github.com/osrf/osrf_testing_tools_cpp

• apex_test_tools

– Description: The package Apex.OS Test Tools contains test helpers

– Repositories:

∗ https://gitlab.com/ApexAI/apex_test_tools

• apex_containers

– Description: A collection of C++ containers suitable for real-time systems

– Repositories:

∗ https://gitlab.com/ApexAI/apex_containers

• realtime_tools

– Description: Contains a set of tools that can be used from a hard real-time thread, without breaking the
real-time behavior

– Repositories:

∗ https://github.com/ros-controls/realtime_tools/tree/foxy-devel

• rclc

– Description: ROS Client Library for the C language

– Repositories:

∗ https://github.com/ros2/rclc

• micro-ROS

20 Chapter 4. Related Projects

https://github.com/ros2/realtime_support
https://gitlab.com/ros-tracing/ros2_tracing
https://gitlab.com/ros-tracing/tracetools_analysis
https://github.com/osrf/osrf_testing_tools_cpp
https://gitlab.com/ApexAI/apex_test_tools
https://gitlab.com/ApexAI/apex_containers
https://github.com/ros-controls/realtime_tools/tree/foxy-devel
https://github.com/ros2/rclc

ROS 2 Real-Time Working Group

– Description: ROS 2 based framework targeting embedded and deeply embedded robot components with
extremely constrained computational resources

– Repositories:

∗ https://micro.ros.org/

∗ https://github.com/micro-ROS

4.3 Real-time demos

• pendulum_control

– Description: Real-time inverted pendulum control demo

– Repositories

∗ https://github.com/ros2/demos/tree/master/pendulum_control

∗ https://docs.ros.org/en/foxy/Tutorials/Real-Time-Programming.html

• pendulum

– Description: Inverted pendulum demo inspired by pendulum_control

– Repositories

∗ https://github.com/ros2-realtime-demo/pendulum

• e2e_demo

– Description: End-to-end latency demo

– Repositories

∗ https://github.com/hsgwa/e2e_demo

4.3. Real-time demos 21

https://micro.ros.org/
https://github.com/micro-ROS
https://github.com/ros2/demos/tree/master/pendulum_control
https://docs.ros.org/en/foxy/Tutorials/Real-Time-Programming.html
https://github.com/ros2-realtime-demo/pendulum
https://github.com/hsgwa/e2e_demo

ROS 2 Real-Time Working Group

22 Chapter 4. Related Projects

CHAPTER

FIVE

RESOURCES

This document contains a compilation of ROS and real-time related documents, articles, and discussions.

5.1 ROS 2 design

• Introduction to Real-time Systems

• Proposal for Implementation of Real-time Systems in ROS 2

5.2 Tutorials / Guides

• Real-time programming in ROS 2

• Building real-time Linux for ROS 2

5.3 ROSCon

5.3.1 ROSCon 2015

• Real-time Performance in ROS 2 Slides Video

5.3.2 ROSCon 2016

• Evaluating the resilience of ROS2 communication layer Slides Video

5.3.3 ROSCon 2017

• Determinism in ROS Slides Video

23

http://design.ros2.org/articles/realtime_background.html
https://design.ros2.org/articles/realtime_proposal.html
https://docs.ros.org/en/rolling/Tutorials/Real-Time-Programming.html
https://docs.ros.org/en/rolling/Tutorials/Building-Realtime-rt_preempt-kernel-for-ROS-2.html
https://roscon.ros.org/2015/presentations/RealtimeROS2.pdf
https://vimeo.com/142621778
https://roscon.ros.org/2016/presentations/rafal.kozik-ros2evaluation.pdf
https://vimeo.com/187705229
https://roscon.ros.org/2017/presentations/ROSCon%202017%20Determinism%20in%20ROS.pdf
https://vimeo.com/236186712

ROS 2 Real-Time Working Group

5.3.4 ROSCon 2018

• Middleware Performance Testing Slides Video

• ROS 2 on Autonomous Vehicles Slides Video

• ROSCon 2018: Mixed Real-Time Criticality with ROS2 - the Callback-group-level Executor slides video

5.3.5 ROSCon 2019

• ROS 2 ON VXWORKS slides video

• ROS2 Real-Time Behavior: Static Memory Allocation video

• Doing Real-Time with ROS 2: Capabilities and Challenges

5.4 Articles

• Exploring the performance of ROS2

• Towards a distributed and real-time framework for robots: Evaluation of ROS 2.0 communications for real-time
robotic applications

• Response-Time Analysis of ROS 2 Processing Chains under Reservation-Based Scheduling

• Latency Overhead of ROS2 for Modular Time-Critical Systems

• Exploring Real-Time Executor on ROS 2

• Distributed and Synchronized Setup towards Real-Time Robotic Control using ROS2 on Linux

• Jan Staschulat, Ingo Lütkebohle, Ralph Lange. The rclc Executor: Domain-specific deterministic scheduling
mechanisms for ROS applications on microcontrollers, EMSOFT 2020.

• Jan Staschulat, Ralph Lange, Dakshina Narahari Dasari. Budget-based real-time Executor for Micro-ROS. CoRR
arXiv:2105.05590, May 2021

• L. Puck et al. Distributed and Synchronized Setup towards Real-Time Robotic Control using ROS2 on Linux

24 Chapter 5. Resources

https://roscon.ros.org/2018/presentations/ROSCon2018_ROS2onAutonomousDrivingVehicles.pdf
https://vimeo.com/293257342
https://roscon.ros.org/2018/presentations/ROSCon2018_ROS2onAutonomousDrivingVehicles.pdf
https://vimeo.com/292695688
https://roscon.ros.org/2018/presentations/ROSCon2018_Lightning1_4.pdf
https://vimeo.com/292707644
https://roscon.ros.org/2019/talks/roscon2019_ros2onvxworks.pdf
https://vimeo.com/378682144
https://vimeo.com/379127767
https://www.apex.ai/roscon2019
https://www.semanticscholar.org/paper/Exploring-the-performance-of-ROS2-Maruyama-Kato/8ea66e5c80705b09957caf2cf78b8041e7362a44
https://arxiv.org/pdf/1809.02595.pdf
https://arxiv.org/pdf/1809.02595.pdf
https://t-blass.de/papers/response-time-analysis-of-ros2.pdf
https://arxiv.org/pdf/2101.02074.pdf
https://ieeexplore.ieee.org/document/9301530
https://ieeexplore.ieee.org/document/9217010
https://ieeexplore.ieee.org/document/9244014
https://ieeexplore.ieee.org/document/9244014
https://arxiv.org/abs/2105.05590
https://arxiv.org/abs/2105.05590
https://ieeexplore.ieee.org/document/9217010

CHAPTER

SIX

CONTACT

6.1 Meetings

• Regular WG Meeting: every other Tuesday at 7 AM Pacific time, see the ROS Events calendar

• To receive meeting invitations, join ros-real-time-working-group-invites

• Meeting notes are kept under ROS 2 Real-time Working Group Agenda

• Meetings are recorded and available in ROS 2 Real-time Working Group Agenda.

• Meetings are open to the public, and anyone is welcome to join

6.2 Communication Channels

• ROS discourse tag wg-real-time

• Chat in the Real-time WG Room on Matrix

25

https://calendar.google.com/calendar/embed?src=agf3kajirket8khktupm9go748%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://groups.google.com/forum/#%21forum/ros-real-time-working-group-invites
https://docs.google.com/document/d/1zBKwDUDeWvJNyCvjzYriaZQoZO2VYGWe1uxw5Xxn5cY/edit?ts=5ec9aabe#heading=h.rwvriogv081
https://docs.google.com/document/d/1zBKwDUDeWvJNyCvjzYriaZQoZO2VYGWe1uxw5Xxn5cY/edit?ts=5ec9aabe#heading=h.rwvriogv081
https://discourse.ros.org/tag/wg-real-time
https://matrix.to/#/

ROS 2 Real-Time Working Group

26 Chapter 6. Contact

CHAPTER

SEVEN

HOW TO CONTRIBUTE

7.1 Standards for subprojects

Subprojects must meet the following criteria (and the WG agrees to maintain them upon adoption).

• Build passes against ROS 2 master

• The ROS 2 standard linter set is enabled and adhered to

• If packages are part of nightly builds on the ROS build farm, there are no reported warnings or test failures

• Quality builds are green (address sanitizer, thread sanitizer, clang thread safety analysis)

• Test suite passes

• Code coverage is measured, and non-decreasing level is enforced in PRs

• Issues and pull requests receive prompt responses

• Releases go out regularly when bugfixes or new features are introduced

• The backlog is maintained, avoiding longstanding stale issues

7.2 Adding new subprojects

To request introduction of a new subproject, add a list item to the “Subprojects” section and open a Pull Request to this
repository, following the default Pull Request Template to populate the text of the PR.

PR will be merged on unanimous approval from Approvers.

7.3 Subproject changes

Modify the relevant list item in the “Subprojects” section and open a Pull Request to this repository, following the
default Pull Request Template to populate the text of the PR.

PR will be merged on unanimous approval from Approvers.

27

ROS 2 Real-Time Working Group

7.4 Deprecating subprojects

Projects cease to be useful, or the WG can decide it is no longer in their interest to maintain. We do not commit to
maintaining every subproject in perpetuity.

To suggest removal of a subproject, remove the relevant list item in the “Subprojects” section and open a Pull Request
in this repository, following instructions in the Pull Request Template to populate the text of the PR.

PR will be merged on unanimous approval from Approvers.

If the repositories of the subproject are under the WG’s GitHub organization, they will be transferred out of the orga-
nization or deleted at this time.

28 Chapter 7. How to Contribute

CHAPTER

EIGHT

ROADMAP

This page describes planned work for the ROS 2 Real-Time Working Group.

29

	Guides
	Real Time Operating System Setup
	Real-Time Linux
	How to build your own Linux real-time kernel
	Introduction
	External guides

	Build a Linux Real-Time kernel using docker
	Introduction
	Supported configuration
	Build and run docker container
	Kernel configuration
	Kernel build
	Deploy
	Download and install Ubuntu 20.04 image
	Copy a new kernel to your system and install it
	Configure boot options
	Verify that eveything is correctly configured
	Benchmark

	Real-time Raspberry PI images
	Introduction
	Raspberry PI images

	Build VxWorks
	Build QNX

	How to configure a RMW implementation
	Fast-DDS
	Cyclone-DDS
	Connext-DDS
	Iceoryx

	How to configure a ROS2 real-time application
	How to use ros2_tracing to trace and analyze an application
	Overview
	Prerequisites
	Installing and building
	Tracing
	Analysis
	Conclusion

	Test environment
	Hardware
	ARM
	Intel

	Software
	ROS2 foxy release
	Latest Ubuntu 20.04 LTS (ISO image)
	Latest Stable PREEMPT_RT Kernel

	Subproject List
	Related Projects
	Performance measurements
	Real-time utilities
	Real-time demos

	Resources
	ROS 2 design
	Tutorials / Guides
	ROSCon
	ROSCon 2015
	ROSCon 2016
	ROSCon 2017
	ROSCon 2018
	ROSCon 2019

	Articles

	Contact
	Meetings
	Communication Channels

	How to Contribute
	Standards for subprojects
	Adding new subprojects
	Subproject changes
	Deprecating subprojects

	Roadmap

